Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Systemin-mediated long-distance systemic defense responses.

Identifieur interne : 000044 ( Main/Exploration ); précédent : 000043; suivant : 000045

Systemin-mediated long-distance systemic defense responses.

Auteurs : Haiyan Zhang [République populaire de Chine] ; Hui Zhang [République populaire de Chine] ; Jinxing Lin [République populaire de Chine]

Source :

RBID : pubmed:32083726

Abstract

Systemin, a peptide plant hormone of 18 amino acids, coordinates local and systemic immune responses. The activation of the canonical systemin-mediated systemic signaling pathway involves systemin release from its precursor prosystemin, systemin binding to its membrane receptor SYSTEMIN RECEPTOR1 (SYR1), and the transport of long-distance signaling molecules, including jasmonic acid, the prosystemin mRNA, volatile organic compounds and possibly systemin itself. Here, we review emerging evidence that the disordered structure and unconventional processing and secretion of systemin contribute to the regulation of systemin-mediated signaling during plant defense. We highlight recent advances in systemin research, which elucidated how cells integrate multiple long-distance signals into the systemic defense response. In addition, we discuss the perception of systemin by SYR1 and its mediation of downstream defense responses.

DOI: 10.1111/nph.16495
PubMed: 32083726


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Systemin-mediated long-distance systemic defense responses.</title>
<author>
<name sortKey="Zhang, Haiyan" sort="Zhang, Haiyan" uniqKey="Zhang H" first="Haiyan" last="Zhang">Haiyan Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387</wicri:regionArea>
<wicri:noRegion>300387</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hui" sort="Zhang, Hui" uniqKey="Zhang H" first="Hui" last="Zhang">Hui Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093</wicri:regionArea>
<wicri:noRegion>100093</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, Jinxing" sort="Lin, Jinxing" uniqKey="Lin J" first="Jinxing" last="Lin">Jinxing Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093</wicri:regionArea>
<wicri:noRegion>100093</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design and College of Biological Sciences, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design and College of Biological Sciences, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32083726</idno>
<idno type="pmid">32083726</idno>
<idno type="doi">10.1111/nph.16495</idno>
<idno type="wicri:Area/Main/Corpus">000207</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000207</idno>
<idno type="wicri:Area/Main/Curation">000207</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000207</idno>
<idno type="wicri:Area/Main/Exploration">000207</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Systemin-mediated long-distance systemic defense responses.</title>
<author>
<name sortKey="Zhang, Haiyan" sort="Zhang, Haiyan" uniqKey="Zhang H" first="Haiyan" last="Zhang">Haiyan Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387</wicri:regionArea>
<wicri:noRegion>300387</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hui" sort="Zhang, Hui" uniqKey="Zhang H" first="Hui" last="Zhang">Hui Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093</wicri:regionArea>
<wicri:noRegion>100093</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, Jinxing" sort="Lin, Jinxing" uniqKey="Lin J" first="Jinxing" last="Lin">Jinxing Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093</wicri:regionArea>
<wicri:noRegion>100093</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design and College of Biological Sciences, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design and College of Biological Sciences, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Systemin, a peptide plant hormone of 18 amino acids, coordinates local and systemic immune responses. The activation of the canonical systemin-mediated systemic signaling pathway involves systemin release from its precursor prosystemin, systemin binding to its membrane receptor SYSTEMIN RECEPTOR1 (SYR1), and the transport of long-distance signaling molecules, including jasmonic acid, the prosystemin mRNA, volatile organic compounds and possibly systemin itself. Here, we review emerging evidence that the disordered structure and unconventional processing and secretion of systemin contribute to the regulation of systemin-mediated signaling during plant defense. We highlight recent advances in systemin research, which elucidated how cells integrate multiple long-distance signals into the systemic defense response. In addition, we discuss the perception of systemin by SYR1 and its mediation of downstream defense responses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32083726</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>226</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Systemin-mediated long-distance systemic defense responses.</ArticleTitle>
<Pagination>
<MedlinePgn>1573-1582</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16495</ELocationID>
<Abstract>
<AbstractText>Systemin, a peptide plant hormone of 18 amino acids, coordinates local and systemic immune responses. The activation of the canonical systemin-mediated systemic signaling pathway involves systemin release from its precursor prosystemin, systemin binding to its membrane receptor SYSTEMIN RECEPTOR1 (SYR1), and the transport of long-distance signaling molecules, including jasmonic acid, the prosystemin mRNA, volatile organic compounds and possibly systemin itself. Here, we review emerging evidence that the disordered structure and unconventional processing and secretion of systemin contribute to the regulation of systemin-mediated signaling during plant defense. We highlight recent advances in systemin research, which elucidated how cells integrate multiple long-distance signals into the systemic defense response. In addition, we discuss the perception of systemin by SYR1 and its mediation of downstream defense responses.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Haiyan</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0002-4803-9655</Identifier>
<AffiliationInfo>
<Affiliation>Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Hui</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Jinxing</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0001-9338-1356</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design and College of Biological Sciences, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">jasmonic acid</Keyword>
<Keyword MajorTopicYN="Y">protein processing</Keyword>
<Keyword MajorTopicYN="Y">receptor-like kinase</Keyword>
<Keyword MajorTopicYN="Y">systemic defense</Keyword>
<Keyword MajorTopicYN="Y">systemin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32083726</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16495</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Abuqamar S, Chai MF, Luo H, Song F, Mengiste T. 2008. Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory. Plant Cell 20: 1964-983.</Citation>
</Reference>
<Reference>
<Citation>Balcke GU, Handrick V, Bergau N, Fichtner M, Henning A, Stellmach H, Tissier A, Hause B, Frolov A. 2012. An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues. Plant Methods 8: 47.</Citation>
</Reference>
<Reference>
<Citation>Beloshistov RE, Dreizler K, Galiullina RA, Tuzhikov AI, Serebryakova MV, Reichardt S, Shaw J, Taliansky ME, Pfannstiel J, Chichkova NV et al. 2018. Phytaspase-mediated precursor processing and maturation of the wound hormone systemin. New Phytologist 218: 1167-1178.</Citation>
</Reference>
<Reference>
<Citation>Bergey DR, Ryan CA. 1999. Wound- and systemin-inducible calmodulin gene expression in tomato leaves. Plant Molecular Biology 40: 815-823.</Citation>
</Reference>
<Reference>
<Citation>Bhattacharya R, Koramutla MK, Negi M, Pearce G, Ryan CA. 2013. Hydroxyproline-rich glycopeptide signals in potato elicit signalling associated with defense against insects and pathogens. Plant Science 207: 88-97.</Citation>
</Reference>
<Reference>
<Citation>Bozorov TA, Dinh ST, Baldwin IT. 2017. JA but not JA-Ile is the cell-nonautonomous signal activating JA mediated systemic defenses to herbivory in Nicotiana attenuata. Journal of Integrative Plant Biology 59: 552-571.</Citation>
</Reference>
<Reference>
<Citation>Bücherl CA, Jarsch IK, Schudoma C, Segonzac C, Mbengue M, Robatzek S, MacLean D, Ott T, Zipfel C. 2017. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. eLife 6: e25114.</Citation>
</Reference>
<Reference>
<Citation>Buonanno M, Coppola M, Di Lelio I, Molisso D, Leone M, Pennacchio F, Langella E, Rao R, Monti SM. 2018. Prosystemin, a prohormone that modulates plant defense barriers, is an intrinsically disordered protein. Protein Science 27: 620-632.</Citation>
</Reference>
<Reference>
<Citation>Chen YC, Siems WF, Pearce G, Ryan CA. 2008. Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. Journal of Biology Chemistry 283: 11469-11476.</Citation>
</Reference>
<Reference>
<Citation>Constabel CP, Yip L, Ryan CA. 1998. Prosystemin from potato, black nightshade, and bell pepper: primary structure and biological activity of predicted systemin polypeptides. Plant Molecular Biology 36: 55-62.</Citation>
</Reference>
<Reference>
<Citation>Coppola M, Cascone P, Madonna V, Di Lelio I, Esposito F, Avitabile C, Romanelli A, Guerrieri E, Vitiello A, Pennacchio F et al. 2017. Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato. Scientific Reports 7: 15522.</Citation>
</Reference>
<Reference>
<Citation>Coppola M, Lelio ID, Romanelli A, Gualtieri L, Molisso D, Ruocco M, Avitabile C, Natale R, Cascone P, Guerrieri E et al. 2019. Tomato plants treated with systemin peptide show enhanced levels of direct and indirect defense associated with increased expression of defense-related genes. Plants 8: 395.</Citation>
</Reference>
<Reference>
<Citation>Coppola M, Ruocco M, Digilio MC, Corrado G, Rao R. 2010. Prosystemin coordinates multiple defense responses in tomato. Minerva Biotecnologica 22: 20-22.</Citation>
</Reference>
<Reference>
<Citation>Corrado G, Arena S, Araujo-Burgos T, Coppola M, Rocco M, Scaloni A, Rao R. 2016. The expression of the tomato prosystemin in tobacco induces alterations irrespective of its functional domain. Plant Cell Tissue and Organ Culture 125: 509-519.</Citation>
</Reference>
<Reference>
<Citation>Corrado G, Sasso R, Pasquariello M, Iodice L, Carretta A, Cascone P, Ariati L, Digilio MC, Guerrieri E, Rao R. 2007. Systemin regulates both systemic and volatile signaling in tomato plants. Journal of Chemical Ecology 33: 669-681.</Citation>
</Reference>
<Reference>
<Citation>Cui Y, Li X, Yu M, Li R, Fan L, Zhu Y, Lin J. 2018. Sterols regulate endocytic pathways during flg22-induced defense responses in Arabidopsis. Development 145: dev165688.</Citation>
</Reference>
<Reference>
<Citation>Cui Y, Zhang X, Yu M, Zhu Y, Xing J, Lin J. 2019. Techniques for detecting protein-protein interactions in living cells: principles, limitations, and recent progress. Science China Life Sciences 62: 619-632.</Citation>
</Reference>
<Reference>
<Citation>de la Noval B, Pérez E, Martínez B, León O, Martínez-Gallardo N, Délano-Frier J. 2007. Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato (Solanum lycopersicum) plants infected with necrotrophic or hemibiotrophic pathogens. Mycorrhiza 17: 449-460.</Citation>
</Reference>
<Reference>
<Citation>Degenhardt DC, Refi-Hind S, Stratmann JW, Lincoln DE. 2010. Systemin and jasmonic acid regulate constitutive and herbivore-induced systemic volatile emissions in tomato, Solanum lycopersicum. Phytochemistry 71: 2024-2037.</Citation>
</Reference>
<Reference>
<Citation>Delano JP, Dombrowski JE, Ryan CA. 1999. The expression of tomato prosystemin in Escherichia coli: a structural challenge. Protein Expression and Purification 17: 74-82.</Citation>
</Reference>
<Reference>
<Citation>Doares SH, Syrovets T, Weiler EW, Ryan CA. 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proceedings of the National Academy of Sciences, USA 92: 4095-4098.</Citation>
</Reference>
<Reference>
<Citation>Dobkowski M, Szychowska A, Pieszko M, Miszka A, Wojciechowska M, Alenowicz M, Ruczynski J, Rekowski P, Celewicz L, Barciszewski J et al. 2014. 'Click' chemistry synthesis and capillary electrophoresis study of 1,4-linked 1,2,3-triazole AZT-systemin conjugate. Journal of Peptide Science 20: 696-703.</Citation>
</Reference>
<Reference>
<Citation>Dombrowski JE, Pearce G, Ryan CA. 1999. Proteinase inhibitor-inducing activity of the prohormone prosystemin resides exclusively in the C-terminal systemin domain. Proceedings of the National Academy of Sciences, USA 96: 12947-12952.</Citation>
</Reference>
<Reference>
<Citation>Farmer EE, Ryan CA. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences, USA 87: 7713-7716.</Citation>
</Reference>
<Reference>
<Citation>Farmer EE, Ryan CA. 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase-inhibitors. Plant Cell 4: 129-134.</Citation>
</Reference>
<Reference>
<Citation>Felix G, Boller T. 1995. Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells. The Plant Journal 7: 381-389.</Citation>
</Reference>
<Reference>
<Citation>Fowler JH, Narváez-Vásquez J, Aromdee DN, Pautot V, Holzer FM, Walling LL. 2009. Leucine aminopeptidase regulates defense and wound signaling in tomato downstream of jasmonic acid. Plant Cell 21: 1239-1251.</Citation>
</Reference>
<Reference>
<Citation>Frost CJ, Mescher MC, Carlson JE, De Moraes CM. 2008. Plant defense priming against herbivores: getting ready for a different battle. Plant Physiology 146: 818-824.</Citation>
</Reference>
<Reference>
<Citation>Gasperini D, Chauvin A, Acosta IF, Kurenda A, Stolz S, Chetelat A, Wolfender JL, Farmer EE. 2015. Axial and radial oxylipin transport. Plant Physiology 169: 2244-2254.</Citation>
</Reference>
<Reference>
<Citation>Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender JL. 2008. Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. Journal of Biological Chemistry 283: 16400-16407.</Citation>
</Reference>
<Reference>
<Citation>Green TR, Ryan CA. 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175: 776-777.</Citation>
</Reference>
<Reference>
<Citation>Gust AA, Pruitt R, Nurnberger T. 2017. Sensing danger: key to activating plant immunity. Trends in Plant Science 22: 779-791.</Citation>
</Reference>
<Reference>
<Citation>Haj Ahmad F, Wu XN, Stintzi A, Schaller A, Schulze WX. 2019. The systemin signaling cascade as derived from time course analyses of the systemin-responsive phosphoproteome. Molecular & Cellular Proteomics 18: 1526-1542.</Citation>
</Reference>
<Reference>
<Citation>Ham BK, Lucas WJ. 2017. Phloem-mobile RNAs as systemic signaling agents. Annual Review of Plant Biology 68: 173-195.</Citation>
</Reference>
<Reference>
<Citation>Heyer M, Reichelt M, Mithofer A. 2018. A holistic approach to analyze systemic jasmonate accumulation in individual leaves of Arabidopsis rosettes upon wounding. Frontiers in Plant Science 9: 1569.</Citation>
</Reference>
<Reference>
<Citation>Holton N, Cano-Delgado A, Harrison K, Montoya T, Chory J, Bishop GJ. 2007. Tomato BRASSINOSTEROID INSENSITIVE1 is required for systemin-induced root elongation in Solanum pimpinellifolium but is not essential for wound signaling. Plant Cell 19: 1709-1717.</Citation>
</Reference>
<Reference>
<Citation>Jacinto T, McGurl B, Franceschi V, Delano-Freier J, Ryan CA. 1997. Tomato prosystemin promoter confers wound-inducible, vascular bundle-specific expression of the β-glucuronidase gene in transgenic tomato plants. Planta 203: 406-412.</Citation>
</Reference>
<Reference>
<Citation>Jones JD, Dangl JL. 2006. The plant immune system. Nature 444: 323-329.</Citation>
</Reference>
<Reference>
<Citation>Kandoth PK, Ranf S, Pancholi SS, Jayanty S, Walla MD, Miller W, Howe GA, Lincoln DE, Stratmann JW. 2007. Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. Proceedings of the National Academy of Sciences, USA 104: 12205-12210.</Citation>
</Reference>
<Reference>
<Citation>Koster T, Marondedze C, Meyer K, Staiger D. 2017. RNA-binding proteins revisited - the emerging Arabidopsis mRNA interactome. Trends in Plant Science 22: 512-526.</Citation>
</Reference>
<Reference>
<Citation>Kumari A, Chetelat A, Nguyen CT, Farmer EE. 2019. Arabidopsis H+-ATPase AHA1 controls slow wave potential duration and wound-response jasmonate pathway activation. Proceedings of the National Academy of Sciences, USA 116: 20226-20231.</Citation>
</Reference>
<Reference>
<Citation>Li J, Chory J. 1997. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90: 929-938.</Citation>
</Reference>
<Reference>
<Citation>Li L, Li C, Lee GI, Howe GA. 2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proceedings of the National Academy of Sciences, USA 99: 6416-6421.</Citation>
</Reference>
<Reference>
<Citation>Li X, Luu DT, Maurel C, Lin J. 2013. Probing plasma membrane dynamics at the single-molecule level. Trends in Plant Science 18: 617-624.</Citation>
</Reference>
<Reference>
<Citation>Liu H, Brettell LE. 2019. Plant defense by VOC-induced microbial priming. Trends in Plant Science 24: 187-189.</Citation>
</Reference>
<Reference>
<Citation>Liu ZX, Wu Y, Yang F, Zhang YY, Chen S, Xie Q, Tian XJ, Zhou JM. 2013. BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proceedings of the National Academy of Sciences, USA 110: 6205-6210.</Citation>
</Reference>
<Reference>
<Citation>Lu D, Wu S, Gao X, Zhang Y, Shan L, He P. 2010. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proceedings of the National Academy of Sciences, USA 107: 496-501.</Citation>
</Reference>
<Reference>
<Citation>Malinowski R, Higgins R, Luo Y, Piper L, Nazir A, Bajwa VS, Clouse SD, Thompson PR, Stratmann JW. 2009. The tomato brassinosteroid receptor BRI1 increases binding of systemin to tobacco plasma membranes, but is not involved in systemin signaling. Plant Molecular Biology 70: 603-616.</Citation>
</Reference>
<Reference>
<Citation>Matsuura H, Takeishi S, Kiatoka N, Sato C, Sueda K, Masuta C, Nabeta K. 2012. Transportation of de novo synthesized jasmonoyl isoleucine in tomato. Phytochemistry 83: 25-33.</Citation>
</Reference>
<Reference>
<Citation>McGurl B, Pearce G, Orozco-Cardenas M, Ryan CA. 1992. Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255: 1570-1573.</Citation>
</Reference>
<Reference>
<Citation>Mousavi SA, Chauvin A, Pascaud F, Kellenberger S, Farmer EE. 2013. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500: 422-426.</Citation>
</Reference>
<Reference>
<Citation>Moyen C, Hammond-Kosack KE, Jones J, Knight MR, Johannes E. 1998. Systemin triggers an increase in cytoplasmic calcium in tomato mesophyll cells: Ca2+ mobilization from intra- and extracellular compartments. Plant, Cell & Environment 21: 1101-1111.</Citation>
</Reference>
<Reference>
<Citation>Moyen C, Johannes E. 1996. Systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusicoccin-induced extracellular acidification of mesophyll tissue. Plant, Cell & Environment 19: 464-470.</Citation>
</Reference>
<Reference>
<Citation>Mucha P, Ruczynski J, Dobkowski M, Backtrog E, Rekowski P. 2019. Capillary electrophoresis study of systemin peptides spreading in tomato plant. Electrophoresis 40: 336-342.</Citation>
</Reference>
<Reference>
<Citation>Nárvaez-Vásquez J, Florin-Christensen J, Ryan CA. 1999. Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell 11: 2249-2260.</Citation>
</Reference>
<Reference>
<Citation>Narváez-Vásquez J, Orozco-Cardenas ML, Ryan CA. 2007. Systemic wound signaling in tomato leaves is cooperatively regulated by systemin and hydroxyproline-rich glycopeptide signals. Plant Molecular Biology 65: 711-718.</Citation>
</Reference>
<Reference>
<Citation>Narváez-Vásquez J, Pearce J, Orozco-Cardenas ML, Franceschi VR, Ryan CA. 1995. Autoradiographic and biochemical evidence for the systemic translocation of systemin in tomato plants. Planta 195: 593-600.</Citation>
</Reference>
<Reference>
<Citation>Narváez-Vásquez J, Ryan CA. 2004. The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 218: 360-369.</Citation>
</Reference>
<Reference>
<Citation>Narváez-Vásquez TuCJ, Park SY, Walling LL. 2008. Targeting and localization of wound-inducible leucine aminopeptidase A in tomato leaves. Planta 227: 341-351.</Citation>
</Reference>
<Reference>
<Citation>Orsini F, Cascone P, De Pascale S, Barbieri G, Corrado G, Rao R, Maggio A. 2010. Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Physiologia Plantarum 138: 10-21.</Citation>
</Reference>
<Reference>
<Citation>Pastor V, Sanchez-Bel P, Gamir J, Pozo MJ, Flors V. 2018. Accurate and easy method for systemin quantification and examining metabolic changes under different endogenous levels. Plant Methods 14: 33.</Citation>
</Reference>
<Reference>
<Citation>Pearce G. 2011. Systemin, hydroxyproline-rich systemin and the induction of protease inhibitors. Current Protein and Peptide Science 12: 399-408.</Citation>
</Reference>
<Reference>
<Citation>Pearce G, Bhattacharya R, Chen YC, Barona G, Yamaguchi Y, Ryan CA. 2009. Isolation and characterization of hydroxyproline-rich glycopeptide signals in black nightshade leaves. Plant Physiology 150: 1422-1433.</Citation>
</Reference>
<Reference>
<Citation>Pearce G, Moura DS, Stratmann J, Ryan CA. 2001. Production of multiple plant hormones from a single polyprotein precursor. Nature 411: 817-820.</Citation>
</Reference>
<Reference>
<Citation>Pearce G, Ryan CA. 2003. Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene. Journal of Biological Chemistry 278: 30044-30050.</Citation>
</Reference>
<Reference>
<Citation>Pearce G, Siems WF, Bhattacharya R, Chen YC, Ryan CA. 2007. Three hydroxyproline-rich glycopeptides derived from a single petunia polyprotein precursor activate defensin I, a pathogen defense response gene. Journal of Biological Chemistry 282: 17777-17784.</Citation>
</Reference>
<Reference>
<Citation>Pearce G, Strydom D, Johnson S, Ryan CA. 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253: 895-897.</Citation>
</Reference>
<Reference>
<Citation>Rocco M, Corrado G, Arena S, D'Ambrosio C, Tortiglione C, Sellaroli S, Marra M, Rao R, Scaloni A. 2008. The expression of tomato prosystemin gene in tobacco plants highly affects host proteomic repertoire. Journal of Proteomics 71: 176-185.</Citation>
</Reference>
<Reference>
<Citation>Ryan CA. 2000. The systemin signaling pathway: differential activation of plant defensive genes. Biochimica et Biophysica Acta 1477: 112-121.</Citation>
</Reference>
<Reference>
<Citation>Ryan CA, Pearce G. 2003. Systemins: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proceedings of the National Academy of Sciences, USA 100(Suppl 2): 14577-14580.</Citation>
</Reference>
<Reference>
<Citation>Sato C, Aikawa K, Sugiyama S, Nabeta K, Masuta C, Matsuura H. 2011. Distal transport of exogenously applied jasmonoyl-isoleucine with wounding stress. Plant and Cell Physiology 52: 509-517.</Citation>
</Reference>
<Reference>
<Citation>Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC. 2013. Green leaf volatiles: a plant's multifunctional weapon against herbivores and pathogens. International Journal of Molecular Sciences 14: 17781-17811.</Citation>
</Reference>
<Reference>
<Citation>Schaller A, Frasson D. 2001. Induction of wound response gene expression in tomato leaves by ionophores. Planta 212: 431-435.</Citation>
</Reference>
<Reference>
<Citation>Schaller A, Oecking C. 1999. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11: 263-272.</Citation>
</Reference>
<Reference>
<Citation>Scheer JM, Ryan CA. 2002. The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proceedings of the National Academy of Sciences, USA 99: 9585-9590.</Citation>
</Reference>
<Reference>
<Citation>Schulze A, Zimmer M, Mielke S, Stellmach H, Melnyk CW, Hause B, Gasperini D. 2019. Wound-induced shoot-to-root relocation of JA-Ile precursors coordinates Arabidopsis growth. Molecular Plant 12: 1383-1394.</Citation>
</Reference>
<Reference>
<Citation>Stenzel I, Hause B, Maucher H, Pitzschke A, Miersch O, Ziegler J, Ryan CA, Wasternack C. 2003. Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato-amplification in wound signalling. The Plant Journal 33: 577-589.</Citation>
</Reference>
<Reference>
<Citation>Stuhrwohldt N, Schaller A. 2019. Regulation of plant peptide hormones and growth factors by post-translational modification. Plant Biology 21(Suppl 1): 49-63.</Citation>
</Reference>
<Reference>
<Citation>Sun JQ, Jiang HL, Li CY. 2011. Systemin/Jasmonate-mediated systemic defense signaling in tomato. Molecular Plant 4: 607-615.</Citation>
</Reference>
<Reference>
<Citation>Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Minambres M, Walther D, Schulze WX, Paz-Ares J et al. 2015. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nature Plants 1: 15025.</Citation>
</Reference>
<Reference>
<Citation>Thorpe MR, Ferrieri AP, Herth MM, Ferrieri RA. 2007. 11C-imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled. Planta 226: 541-551.</Citation>
</Reference>
<Reference>
<Citation>Tortiglione C, Fogliano V, Ferracane R, Fanti P, Pennacchio F, Monti LM, Rao R. 2003. An insect peptide engineered into the tomato prosystemin gene is released in transgenic tobacco plants and exerts biological activity. Plant Molecular Biology 53: 891-902.</Citation>
</Reference>
<Reference>
<Citation>Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T, Koo AJ, Howe GA, Gilroy S. 2018. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361: 1112-1115.</Citation>
</Reference>
<Reference>
<Citation>Uversky VN. 2013. Unusual biophysics of intrinsically disordered proteins. Biochimica et Biophysica Acta 1834: 932-951.</Citation>
</Reference>
<Reference>
<Citation>Vos IA, Verhage A, Schuurink RC, Watt LG, Pieterse CM, Van Wees SC. 2013. Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid. Frontiers in Plant Science 4: 539.</Citation>
</Reference>
<Reference>
<Citation>Wang L, Einig E, Almeida-Trapp M, Albert M, Fliegmann J, Mithofer A, Kalbacher H, Felix G. 2018a. The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. Nature Plants 4: 152-156.</Citation>
</Reference>
<Reference>
<Citation>Wang L, Xue Y, Xing J, Song K, Lin J. 2018b. Exploring the spatiotemporal organization of membrane proteins in living plant cells. Annual Review of Plant Biology 69: 525-551.</Citation>
</Reference>
<Reference>
<Citation>Wang Q, Zhao Y, Luo W, Li R, He Q, Fang X, Michele RD, Ast C, von Wirén N, Lin J. 2013. Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1;3 by clustering and internalization. Proceedings of the National Academy of Sciences, USA 110: 13204-13209.</Citation>
</Reference>
<Reference>
<Citation>Xing J, Li X, Wang X, Lv X, Wang L, Zhang L, Zhu Y, Shen Q, Baluška F, Šamaj J et al. 2019. Secretion of phospholipase Dδ functions as a regulatory mechanism in plant innate immunity. Plant Cell 31: 3015-3032.</Citation>
</Reference>
<Reference>
<Citation>Xu S, Liao CJ, Jaiswal N, Lee S, Lee SY, Garvey M, Kaplan I, Mengiste T. 2018. Tomato PEPR1 ORTHOLOG RECEPTOR-LIKE KINASE1 regulates responses to systemin, necrotrophic fungi, and insect herbivory. Plant Cell 30: 2214-2229.</Citation>
</Reference>
<Reference>
<Citation>Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA. 2010. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22: 508-522.</Citation>
</Reference>
<Reference>
<Citation>Yang L, Perrera V, Saplaoura E, Apelt F, Bahin M, Kramdi A, Olas J, Mueller-Roeber B, Sokolowska E, Zhang W et al. 2019. m5C methylation guides systemic transport of messenger RNA over graft Junctions in plants. Current Biology 19: 2465-2476.</Citation>
</Reference>
<Reference>
<Citation>Zhang H, Hu Y. 2017. Long-distance transport of prosystemin messenger RNA in tomato. Frontiers in Plant Science 8: 1894.</Citation>
</Reference>
<Reference>
<Citation>Zhang H, Yu P, Zhao J, Jiang H, Wang H, Zhu Y, Botella MA, Samaj J, Li C, Lin J. 2018. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance. New Phytologist 217: 799-812.</Citation>
</Reference>
<Reference>
<Citation>Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S et al. 2010. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host and Microbe 7: 290-301.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Haiyan" sort="Zhang, Haiyan" uniqKey="Zhang H" first="Haiyan" last="Zhang">Haiyan Zhang</name>
</noRegion>
<name sortKey="Lin, Jinxing" sort="Lin, Jinxing" uniqKey="Lin J" first="Jinxing" last="Lin">Jinxing Lin</name>
<name sortKey="Lin, Jinxing" sort="Lin, Jinxing" uniqKey="Lin J" first="Jinxing" last="Lin">Jinxing Lin</name>
<name sortKey="Zhang, Hui" sort="Zhang, Hui" uniqKey="Zhang H" first="Hui" last="Zhang">Hui Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000044 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000044 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32083726
   |texte=   Systemin-mediated long-distance systemic defense responses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32083726" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020